Complementation of HYPONASTIC LEAVES1 by double-strand RNA-binding domains of DICER-LIKE1 in nuclear dicing bodies.

نویسندگان

  • Qi Liu
  • Qingqing Yan
  • Yin Liu
  • Fang Hong
  • Zhenfei Sun
  • Leilei Shi
  • Ying Huang
  • Yuda Fang
چکیده

MicroRNAs (miRNAs) are a class of small regulatory RNAs that are found in almost all of the eukaryotes. Arabidopsis (Arabidopsis thaliana) miRNAs are processed from primary miRNAs (pri-miRNAs), mainly by the ribonuclease III-like enzyme DICER-LIKE1 (DCL1) and its specific partner, HYPONASTIC LEAVES1 (HYL1), a double-strand RNA-binding protein, both of which contain two double-strand RNA-binding domains (dsRBDs). These dsRBDs are essential for miRNA processing, but the functions of them are not clear. Here, we report that the two dsRBDs of DCL1 (DCL1-D1D2), and to some extent the second dsRBD (DCL1-D2), complement the hyl1 mutant, but not the first dsRBD of DCL1 (DCL1-D1). DCL1-D1 is diffusely distributed throughout the nucleoplasm, whereas DCL1-D2 and DCL1-D1D2 concentrate in nuclear dicing bodies in which DCL1 and HYL1 colocalize. We show further that protein-protein interaction is mainly mediated by DCL1-D2, while DCL1-D1 plays a major role in binding of pri-miRNAs. These results suggest parallel roles between C-terminal dsRBDs of DCL1 and N-terminal dsRBDs of HYL1 and support a model in which Arabidopsis pri-miRNAs are recruited to dicing bodies through functionally divergent dsRBDs of microprocessor for accurate processing of plant pri-miRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementation of Hyponastic Leaves1 by Double-Strand RNA-Binding Domains of Dicer-Like1 in Nuclear Dicing Bodies1[W][OPEN]

MicroRNAs (miRNAs) are a class of small regulatory RNAs that are found in almost all of the eukaryotes. Arabidopsis (Arabidopsis thaliana) miRNAs are processed from primary miRNAs (pri-miRNAs), mainly by the ribonuclease III-like enzyme DICER-LIKE1 (DCL1) and its specific partner, HYPONASTIC LEAVES1 (HYL1), a double-strand RNA-binding protein, both of which contain two doublestrand RNA-binding ...

متن کامل

Identification of Nuclear Dicing Bodies Containing Proteins for MicroRNA Biogenesis in Living Arabidopsis Plants

MicroRNAs (miRNAs) are important for regulating gene expression in muticellular organisms. MiRNA processing is a two-step process. In animal cells, the first step is nuclear and the second step cytoplasmic, whereas in plant cells, both steps occur in the nucleus via the enzyme Dicer-like1 (DCL1) and other proteins including the zinc-finger-domain protein Serrate (SE) and a double-stranded RNA (...

متن کامل

The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing.

Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1) is a microRNA (miRNA) biogenesis protein that contains two N-terminal double-stranded RNA binding domains (dsRBDs), a putative nuclear localization site (NLS), and a putative protein-protein interaction domain. The interaction of HYL1 with DICER-LIKE1 is important for the efficient and precise processing of miRNA primary transcripts in plant miRNA ...

متن کامل

The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis.

Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 null mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new...

متن کامل

KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1.

The biogenesis of microRNAs (miRNAs), which regulate mRNA abundance through posttranscriptional silencing, comprises multiple well-orchestrated processing steps. We have identified the Arabidopsis thaliana K homology (KH) domain protein REGULATOR OF CBF GENE EXPRESSION 3 (RCF3) as a cofactor affecting miRNA biogenesis in specific plant tissues. MiRNA and miRNA-target levels were reduced in apex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 163 1  شماره 

صفحات  -

تاریخ انتشار 2013